
Marelle
Mathematics, reasoning, software

Yves Bertot

March 2017

Objectives

I Explore type-theory based theorem proving applications for:
I mathematics
I software

I Mathematics needed for software correctness

I Software for advances in mathematics

Elements of context

I The Coq system: a leader in its domain
I http://coq.inria.fr
I ACM Software System Award 2013

(https://www.youtube.com/watch?v=vwA4JZ-5qMU)
I A central tool for prestigious research achievements
I CompCert (very high quality compiler), DeepSpec (US big

project)
I Feit-Thompson (Major mathematical proof in Algebra)

http://coq.inria.fr
https://www.youtube.com/watch?v=vwA4JZ-5qMU

Methodology

I Write programs in a very safe programming language

I Write expected properties of the data and the programs

I Prove that the properties are satisfied
I Compile into more conventional languages

I When doing proofs, mathematics may be required

I Computer science with a strong flavor of logic, proof theory,
and mathematics

Formalizing mathematics

I Mathematics at the limit of human capabilities
I

4-color theorem, Kepler conjecture

I Odd order theorem (finite groups: Feit-Thompson)

I Reflection: use proved decision procedures
I Algebra and Geometry

I Linear algebra and related software
I Polynomial systems
I Algebraic topology
I Precise computation of mathematical functions

The main context: The Coq system

I A dedicated modelling language for software and mathematics
I A functional style,
I Types used for specifications,
I Mix data, programs, specifications, and proofs,
I High-level of abstraction: write once, apply in many domains.

I A collection of tools to derive executable software from the
models

I Generation of executable Caml, Haskell, or Scheme code,
I Connections to verification on C or Java.

I An international success
I 2013 ACM Sigplan Software System award

(Huet, Coquand, Paulin, Barras, Filliatre, Herbelin, Murthy,
Bertot, Castéran)

I Our expertise on this system is well-established
I Coq’Art book by Y. Bertot and P. Castéran,

translated in Chinese and published by Tsinghua U. P.

The team’s contributions

I Extensions to the Coq system:
I Packages for reasoning on recursive definitions,
I Libraries for large number computations,
I Libraries for algebra,
I Powerful decision procedures, e.g. in algebraic reasoning.

I Study of specific domains:
I Geometry: figures and algorithms,
I Polynoms: root isolation, decision procedures,
I Cryptography robustness,
I Fundamental mathematics: Finite group theory, linear algebra,
I Exact real computation, multi-dimensional real analysis.

Technical insight: computing numbers to high precision

I ⇡0 = 2 +
p
2

I
y0 =

p
2 yn+1 =

1 + yn

2
p
yn

I
z1 =

pp
2 zn+1 =

1 + znyn

(1 + zn)
p
yn

I ⇡n+1 = ⇡n
1 + yn+1

1 + zn+1

I ⇡n converges quadratically to ⇡

0 ⇡n � ⇡ 4⇡0
5002n

Abstract description

Definitions of y and z given elsewhere

Fixpoint agmpi n :=

match n with

0%nat => (2 + sqrt 2)

| S p => agmpi p * (1 + y_ n (/sqrt 2))

/ (1 + z_ n (/sqrt 2))

end.

Fixed precision computation

Definition hp1 :=

(*some large integer*) (2 ^ magnifier)%bigZ.

Definition hp2 := 2 * hp1.

Definition invhp x := (hp1 * hp1 / x)%bigZ.

Definition sqrthp x := BigZ.sqrt (x * hp1).

Definition mulhp x y := ((x * y) / hp1)%bigZ.

Definition addhp x y := (x + y)%bigZ.

Notation "x + y" := (addhp x y) : hp_scope.

Notation "x * y" := (mulhp x y) : hp_scope.

Notation "x / y" := (mulhp x (invhp y)) : hp_scope.

Delimit Scope hp_scope with H.

Properties of the operations

I All operations return integers, but they represent rational
numbers

I multiplication, division, and square are only approxmations

I the rounding error is bounded by 2�magnifier

I addition and multiplication by 2 incur no rounding error

Concrete implementation of algorithm

Fixpoint agmpi n :=

match n with

0%nat => ((hp2 + (sqrthp hp2))%H, y1, z1)

| S p =>

let ’(pip, yn, zn) := agmpi p in

let sy := sqrthp yn in

let zn1 := (hp1 + zn)%H in

((pip * ((hp1 + yn)%H / zn1)%H)%H,

((hp1 + yn)%H / (hp2 * sy)%H)%H,

((hp1 + (yn * zn)%H)%H / (zn1 * sy)%H)%H)

end.

Using Coq as a symbolic computation engine

I Computation of one million digits of ⇡ in less than 2 hours

I Less e�cient than dedicated C or C++ code, but all steps
logically verified

I Mathematical proofs of algorithm and of rounding accuracy

Future orientation

I Improvements of the language for proofs and library
development

I Research on cryptographic algorithms
I Research on algorithms for robotics

I Algorithmic geometry and motion planning
I Ordinary di↵erential equations and control

