Algorithms - Biology - Structure

Frederic.Cazals@inria.fr

http://team.inria.fr/abs
Algorithms - Biology - Structure: Team and Vision

Modeling high-resolution structures

Modeling the flexibility of macro-molecules

Modeling large assemblies

Software
History
– Team created: July 2007

Composition
– Permanent: D. Mazauric, F. Cazals
– Visitor: S. Apaydin
– (part time) Engineer: T. Dreyfus
– PhD students
 A. Chevallier (Energy landscapes)
 R. Tetley (Structural alignments)
 D. Bulavka (Collective coordinates)
 M. Simsir (Modeling drug efflux in cancer)

Graduated over the past 4 years
D. Agarwal: Native mass spectrometry; Harvard med school
A. Lhéritier: Machine learning/Two-sample tests; Amadeus SA
S. Marillet: Modeling antibody-antigen complexes; CHU Poitiers
The structure-to-function relationship

- Protein complexes and biological functions
 - Understanding the stability and the specificity of macro-molecular interactions
 - Exploiting structural information crystallography, NMR, EM, SAXS,…
 - Performing predictions with little/no structural information using remote homology information

- Structural information is scarce

Ref: Janin, Bahadur, Chakrabarti; Quart. reviews of biophysics; 2008
Ref: Levitt; PNAS 106; 2009
Emergence of macromolecular function(s) from Structure – Thermodynamics – Dynamics

Structure: stable conformations i.e. local minima of the PEL

Thermodynamics: meta-stable conformations i.e. ensemble of conformations easily inter-convertible into one - another.

Dynamics: transitions between meta-stable conformations e.g. Markov state model

Potential Energy Landscape
- large number of local minima
- enthalpic barriers
- entropic barriers

Structure: stable conformations i.e. local minima of the PEL

Thermodynamics: meta-stable conformations i.e. ensemble of conformations easily inter-convertible into one - another.

Dynamics: transitions between meta-stable conformations e.g. Markov state model
Vision: synergy computer science - structural biology

▷ Modeling: leveraging experimental data

▷ Complementary approaches
 - Machine learning approaches: classification / regression
 - Ab initio approaches: structure / thermodynamics / dynamics

▷ Work-packages at a glance
 - Modeling high-resolution structures
 - Modeling large assemblies
 - Modeling the flexibility of proteins
 - Algorithmic foundations
Algorithms - Biology - Structure: Team and Vision

Modeling high-resolution structures

Modeling the flexibility of macro-molecules

Modeling large assemblies

Software
Estimating binding affinities

Dissociation constant and dissociation free energy:

\[K_d = [A][B]/[AB] \]
\[\Delta G_d = -RT \ln K_d/c^\circ = \Delta H - T \Delta S. \]

Problem statement: estimate the binding affinity of two partners from

- High resolution crystal structures of partners and complex
- Specific conditions (pH, ionic strength, . . .)
- Key difficulty: enthalpy - entropy compensation (\(K_d\) is of thermodynamic nature)
 (\(!\) predictions with \(\Delta G_d < 1.4\) kcal/mol are hard

State-of-the-art: numerous approaches

- Knowledge based approaches:
 complex models face overfitting; sparse models may be overly restrictive
- Molecular mechanics based approaches:
 require specific hypothesis . . . or massive calculations

Ref: Kastritis et al, Protein science, 2011 (the SAB; 144 cases)
Ref: Janin, Protein Science, 2014
Estimating binding affinities

▷ Contributions: models combining novel parameters and supervised regression
 - Novel variables coding enthalpic and entropic variations upon binding
 - Model selection procedure based on cross validation
 - State-of-the-art binding affinity estimates on the SAB:
 - whole SAB: K_d within one and two OOM in 48% and 79% of cases
 - high resolution (2.5Å): K_d within one and two OOM in 62% and 89%

▷ Assessment:
 - Sensitivity to the resolution of crystal structures (cf Cruickshank’s formula)
 - Sensitivity to coverage of model space by learning set (supervised regression)
 - Predicting is not explaining

▷ Ref: Marillet, Boudinot, Cazals; Proteins 2015
▷ Ref: Marillet, Lefranc, Boudinot, Cazals; Frontiers in Immuno., 2017
▷ Ref: Vangone and Bonvin, eLIFE, 2015
Algorithms - Biology - Structure: Team and Vision

Modeling high-resolution structures

Modeling the flexibility of macro-molecules

Modeling large assemblies

Software
Energy landscapes: structure – thermodynamics – dynamics

- **Problem statement:** emergence of function from structure and dynamics
 For proteins: understanding *minimal frustration*

- **Three (overlapping) classes of ab initio approaches:**
 - Molecular dynamics (including REMD, metadynamics)
 Model reduction: dimensionality reduction (PCA, Isomap, diffusion maps)
 - Monte Carlo methods (MCMC, importance sampling, Wang-Landau)
 Model reduction: Markov state model design via lumping
 - Energy landscapes methods (the basin hopping lineage)
 Model reduction: superposition approach via coarse-graining

- **Bottleneck:** massive calculations required

Ref: Wales; *Energy Landscapes*; 2003
Ref: Chipot; *Frontiers in free-energy calculations*; 2014
Analysis of sampled energy landscapes

- **Contributions:** novel concepts and algorithms to
 - Analyze conformational ensembles
 - Analyze sampled energy landscapes: coarse graining with topological persistence

- **Assessment:**
 - State-of-the-art algorithms analysis/coarse-graining methods
 - Most of the analysis geared towards potential energy landscapes
 work ahead on free energy landscapes

Ref: Cazals, Dreyfus, Mazaureic, Roth, Robert; J. Comp. Chem., 2015
Ref: Carr, Mazauric, Cazals, Wales; J. Chem. Phys.; 2016
Exploring Potential Energy Landscapes:
basin hopping

- **Goal**: enumerating low energy local minima
- **Basin-hopping and the basin hopping transform**
 - Random walk in the space of local minima
 - Requires a *move set* and an *acceptance test* (cf Metropolis) and the ability to descend the gradient (*quenching*) aka energy minizations
- **Limitation**: the Metropolis criterion yields trapping

Ref: Li and Scheraga, PNAS, 1987
Exploring energy landscapes in depth and breadth: a generic approach yielding BH, T–RRT, . . .

- Goal: crawl down the potential energy landscape

- Strategy: force the exploration of empty space

- Hybrid algorithm: alternate BH and T-RRT extensions

- Key ingredients:
 - Boosting the identification of low lying minima with the Voronoi bias
 - Favoring spatial adaptation—local exploration parameters
 - Handling distances efficiently

Ref: Roth, Dreyfus, Robert, Cazals; J. Comp. Chem.; 2016
Exploring energy landscapes: performances of Hybrid

- **Contributions:** enhanced exploration of low lying regions of a complex landscape
- **Protocol:** on BLN69, a model protein with 207 d.o.f:
 - Contenders: BH, T-RRT, Hybrid for various parameter values b

 - **Algorithm**
 - **BBox \varnothing: low lying mins**
 - **Median energies: all mins**

\[
BLN69 \text{ – min – } E_{-100}
\]

- **Assessment:**
 - PEL exploration balancing depth and breadth:
 - doubled the num. of local mins. (458,082 minima to 1,044,118)
 - explored lower regions of the PEL
 - Combines critical building blocks:
 - minimization, spatial exploration *boosting*, nearest neighbor searches
 - Ongoing: bridging the gap to thermodynamics via DoS calculations

- **Ref:** Oakley et al; J. of Physical Chemistry B; 2011
- **Ref:** Roth, Dreyfus, Robert, Cazals; J. Comp. Chem.; 2016
Algorithms - Biology - Structure: Team and Vision

Modeling high-resolution structures

Modeling the flexibility of macro-molecules

Modeling large assemblies

Software
Large Assemblies: Native Mass Spectroscopy

- **Input:** mass spectrum of oligomers of a (large) assembly

1. Disrupting an assembly into oligomers (from sub-units to bigger complexes)
2. Mass spectrometry yields a m/z spectrum then a mass spectrum
3. Decomposing an individual mass yields the list of proteins in a sub-complex

Problem: reconstructing pairwise contacts from the composition of oligomers

- NB: coarse structural information (contacts) from combinatorial information

State-of-the-art

- Experiments: recent techniques mastered by few groups (Robinson, Hecht)
- Data analysis: heuristics

Ref: Taverner, Robinson et al; Accounts of chemical research; 2008
Native Mass Spectrometry: Connectivity Inference from oligomers

Contributions
- Hardness: problem is NP-complete and APX-hard ($P \neq NP$: no PTAS)
- Exact algorithm based on Mixed Integer Linear Programming (MILP)
 → generates all solutions for $OPT + k$ ($k \geq 0$)
- Greedy polynomial algorithm with controlled approximation factor:
 → $2(\log n + \kappa)$, with κ max. # oligomers of a vertex
- Experiments on four of the biggest systems known to date:
 - more parsimonious solutions (than those of contenders)
 - edges reported in (almost) perfect agreement with known contacts

Assessment: doubled the quality of predictions by contenders

Ref: Inria ABS + Inria COATI, European Symp. on Algorithms, 2013
Ref: Agarwal, Caillouet, Coudert, Cazals, Molecular and Cellular Proteomics, 2015
Connectivity inference with biophysical constraints

Graph constraints reflecting biophysical and structural biology properties:

- subunit with limited number of neighbors → bounded maximum degree
- subunit with known contacts → family of admissible subgraphs
- presence of symmetries → symmetries of admissible graphs

Generalized inference as minimum \mathcal{F}-Overlay: given a graph family \mathcal{F}:

Input: a hypergraph $H = (V, E)$ – with E the oligomers
Output: a graph $G = (V, E)$ with minimum $|E(G)|$ such that:

▶ $\forall S \in E$: induced graph $G[S]$ has a spanning subgraph in \mathcal{F}

NB: $\mathcal{F} \equiv$ all trees $\Leftrightarrow G[S]$ is connected \Leftrightarrow previous inference problem

Our results:

▶ Complexity dichotomy: for every \mathcal{F}, we can tell whether Minimum \mathcal{F}-Overlay is Polynomial or NP-complete.

▶ Parameterized algorithms: for almost every \mathcal{F} for which the problem is NP-complete, we can tell whether the problem is FPT or W[1]-hard.

Ref: D. Mazauric et al, IWOCA 2017
ABS

Algorithms - Biology - Structure: Team and Vision

Modeling high-resolution structures

Modeling the flexibility of macro-molecules

Modeling large assemblies

Software
The Structural Bioinformatics Library

http://sbl.inria.fr

Structural Bioinformatics Library
A C++/Python API for solving structural biology problems.

Conformational analysis:
modeling energy landscapes

Why adopt the SBL?

For Biologists:
- comprehensive in silico environment providing applications,
- answering complex bio-physical problems,
- in a robust, fast and reproducible way.

For Developers:
- broad C++/python toolbox,
- with modular design and carefull specifications,
- fostering the development of complex applications.

Ref: Cazals and Dreyfus; Bioinformatics, 2017
The Structural Bioinformatics Library: Architecture

Who?
- End-User
- Developer
- Contributor

Where?
- Applications
- Models/Modules
- Core

What?
- Programs
- Applicative packages
- Algorithmic packages