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Human activity understanding
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Challenges in People Detection
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Background subtraction:

A Pros: Reducing processing time

A Cons: Sensitive to illumination change, moving background, shadows, overlappingpeop | e é
RGBD sensors (Asus, Kinect, Real Sense, &)
A Pros:

A Accurate human/head detector (occlusion)
A Night and day (IR camera)
A Privacy protection (Depth map)
A Cons:
A Sensitive to strong day light
A Narrow field of view, accurate up to 4 meters

Wireless Sensors: beacon, smart-phone, RFID
A Pros:
A Human ID
A Reliable (no lost ID track)
A Cons:
A Inaccurate (2 beacons define a zone of few meters), battery for 3 years
A Cooperative (download an app on your cellular-phone, open your WiFi/Bluetooth)
A Require WiFi hotspot - wireless LAN (WLAN) network, calibration step

High Resolution, High Dynamic Range video cameras

A Pros:
A Accurate human/head detector (e.g. DPM, DCNN)
A Inside/outside
A GPU architecture £ /N
A Cons: /\/ /
A Processing power, Sensitive to training dataset a ;" | &’Z,n,,,m,.,,,,m,m,,‘,
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People/Head detection Smart Room Dataset

Visualization lodad detection
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CNN Architecture: RPN - RCNN - SSD

Define the deep learning people detection architecture
VGG/Resnet/Inception
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People detection : Faster-RCNN on MOT
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SSD and Faster-RCNN

VGG Fine-tuning: larger training set is better
compatibility Training with Testing (same resolution)
Larger image size is better (after FT): 300x300 < 500x500

Dataset/ Algorithm Faster-RCNN SSD SSD After finetuning
(VOC) (COCO+VOC) +Caltech
1- INRIA 13% 15% 51%
2- Caltech 56% 34% 25%
3- Daimler 44% 28% 20%
4- ETHZ 58% 53% 60%
5- TUD-Brussels 77% 67% 59%
BB aspect ratio 512 Caltech only 512 FT coco param 512 FT ar=0.41 300 FT ar=0.41
Reasonable 32.18 25.52% 13.22% 20.88%
All 68.08 60.45 54.20 64.67

Hyper parameters: SSD Results (Fine-tuning with Caltech new set) :

512 FT coco param, MR=25.52% -
512 FT scale, aspect ratio=0.41, MR=11,9% /”,"Z)‘



People detection : VGG - SSD on Caltech-All
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People detection : beyond RPN/RCNN

Challenges:

A Cross-datasets, Low resolution, Occlusion, low Contrast: specific training samples
A Hyper-parameters: position, ratio of anchor box, scale, image resolution
A Tracking: how to use temporal consistency, motion features

A Deeper Network (Inception, ResNet), more training samples (data augmentation)

Research Directions:

A Combining features from the different layers: focus of attention, ensemble of
classifiers

A Multi-task learning: several loss functions for Bbox class, pixel segmentation, 3D,
body parts

A Changing the classifier: loss function replaced by random/boosted forests
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Person Reidentification (ILIDS)
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CCTV cameras, UK: 4M, London: 1.8M

Human can not perform efficient surveillance after 12min@s | g ,



