Fixed-Priority scheduling of dual-criticality systems

Sanjoy Baruah and Alan Burns
Fixed-Priority scheduling of dual-criticality systems

Sanjoy Baruah and Alan Burns

1. Context and Background
2. FP scheduling and mixed criticalities: A survey
3. Period Transformation (PT) and mixed criticalities
Context and Background
Requirements in real-time systems design

Correctness - by using rigorous design methodologies

Constrain the system designer to only choose safe designs

“Freedom from choice” - A. Sangiovanni-Vincentelli

Efficiency - by the application of scheduling theory
Requirements in real-time systems design

Correctness - by using rigorous design methodologies

Fixed Priority (FP) scheduling: the RMA approach
- Formalized industrial practice
- Based on strong mathematical foundations
- Good out-reach (and public relations! 😊)

Efficiency - by the application of scheduling
Requirements in real-time systems design

Correctness - by using rigorous design methodologies

 Fixed Priority (FP) scheduling: the **RMA** approach
 - Formalized industrial practice
 - Based on strong mathematical foundations
 - Good out-reach (and public relations! 😊)

Efficiency - by the application of scheduling theory

 Increase efficiency:
 “Better” priority assignment: Rate/Deadline Monotonic
 Choosing the periods appropriately: harmonic task systems
A complicating factor

RT systems becoming more complex implemented upon COTS platforms

COTS platforms are nondeterministic at run-time

Example: $x := a + b$ on the Motorola PowerPC 755
- Best case: 3 cycles
- Worst case: 321 cycles

In the 1990’s: the Motorola 64K had best case = worst case = 20 cycles

Resource over-provisioning to deal with unpredictability

Resource over-provisioning causes run-time inefficiencies
Mixed-criticality systems

Functionalities of **different criticalities** upon a shared platform

- use resource over-provisioning to validate **highly critical** functionalities at **high levels of assurance**

- **design-time** resource reclamation to validate **less critical** functionalities at **lower levels of assurance**

A NEW scheduling problem (finally! 😊)
Fixed-Priority scheduling of Mixed-Criticality systems: A review
Priority assignment schemes

Collection of mixed-criticality sporadic tasks executing on a single preemptive processor

Each task τ_i:
- HI or LO criticality
- Relative deadline D_i
- Minimum inter-arrival separation ("period") T_i
- Two WCETs: $C_i(LO)$ and $C_i(HI)$, with $C_i(LO) \leq C_i(HI)$

Determine a single scheduling strategy
- If each job of each τ_i completes in $\leq C_i(LO)$ units of execution, then all jobs of all tasks complete by their deadlines
- If each job of each τ_i completes in $\leq C_i(HI)$ units of execution, then all jobs of HI-criticality tasks complete by their deadlines

Vestal. Preemptive scheduling of multi-criticality systems with varying degrees of execution time assurance. RTSS 2007
Priority assignment schemes

Adaptive mixed-criticality (AMC)

A new scheme:
static mixed-criticality (SMC)

Deadline Monotonic (DM)
(Just ignore the criticalities)

Criticality Monotonic (CM)
(Then) current industrial practice

Baruah, Burns, and Davis. Response-time analysis for mixed-criticality systems. RTSS 2011

Vestal. Preemptive scheduling of multi-criticality systems with varying degrees of execution time assurance. RTSS 2007
Period Transformation vs Adaptive Mixed Criticality
Period transformation (PT): Scale down the parameters of HI-criticality tasks to make a DM priority assignment criticality-monotonic

<table>
<thead>
<tr>
<th>criticality</th>
<th>C_i(LO)</th>
<th>C_i(HI)</th>
<th>$D_i = T_i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_1</td>
<td>HI</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>τ_2</td>
<td>LO</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Scheduling the original task is not equivalent to scheduling a mixed-criticality task with the scaled-down parameters!!

Signals HI-criticality behavior

HI-criticality behavior?
Observations - 1

Result: AMC and PT are **incomparable**: each priority assignment scheme can schedule instances that the other cannot.
Observations - 2

Result: AMC and PT are **incomparable**: each priority assignment scheme can schedule instances that the other cannot

PT on mixed-criticality instances

- Increase priority of HI tasks
- Improve **utilization bound** (as on non-MC tasks)

 By making task periods harmonic

Result: AMC dominates PT for harmonic task systems
Context and Conclusions

Correctness and efficiency concerns in real-time systems

Design methodologies facilitate correctness

Scheduling theory: improve design methodologies to achieve efficiency

The Fixed-Priority (RMA) design methodology

- platforms increasingly unpredictable → mixed-criticality implementations

- A survey of fixed-priority approaches to MC scheduling

- A comparative evaluation of the Period Transformation (PT) approach