Continuity for Network Calculus

Marc Boyer, Guillaume Dufour, Luca Santinelli

ONERA - The French Aerospace Lab

21st International Conference on Real-Time Networks and Systems (RTNS 2013) Friday 18th October

retour sur innovation

Continuity for Network Calculus

What is the problem?

- Network calculus:
 - a theory to compute memory and delay bounds in networks
 - used to certify A380 backbone
- Network calculus handle "arrival curves" functions
- Packet arrival create discontinuities
 - Some papers assume left-continuous functions (start of busy period is well defined)
 - Some papers assume right-continuous functions (departure time of packet is well defined)
- Everybody claim that is does not make any difference and that is does not require to pass time on it
- We prove it was right

Outline

Network calculus
Reality modelling
Contract modelling
Bound computing

The continuity problem

Contribution

Conclusion

Mathematical background

- Based on the (min,plus) dioid
 - Two basic operators: \land , minimum and +, sum
 - Some associated operators: convolution *, sub-additive closure
 *, non-negative non-decreasing closure [·]⁺

$$(f * g)(t) = \inf_{0 \le s \le t} f(t - s) + g(s)$$

$$f^* = \delta_0 \wedge f \wedge (f * f) \wedge (f * f * f) \wedge \cdots$$

$$[f]^+_{\uparrow}(t) = \sup_{0 \le s \le t} \{ \max(f(s), 0) \}$$

Flows and servers

- Flow: Cumulative curve A
 - ullet A(t): amount of data sent up to time t
 - Properties: null at 0 (and before), non decreasing
- ullet Server: simple input/output relation: $S\subset \mathcal{F}_0 imes \mathcal{F}_0$
 - Property: departure/output produced after arrival/input:

$$A \xrightarrow{S} D \implies A \geq D$$

• Worst delay d(A, S) and buffer use b(A, S).

$$d(A,S) = \sup_{A \xrightarrow{S} D} h(A,D) \qquad b(A,S) = \sup_{A \xrightarrow{S} D} v(A,D) \qquad (1)$$

Arrival and service curves

- A, S, D are real behaviours
 - unknown at design time
 use of contracts
- Traffic contract: arrival curve A flow A has arrival curve α (A $\prec \alpha$) iff

$$\forall t, d \ge 0 : A(t+d) - A(t) \le \alpha(d) \iff A \le A * \alpha$$
 (2)

• Server contract: simple service curve A server S offers a minimal service of curve β ($S \supseteq \beta$) iff

$$\forall A \xrightarrow{S} D : D \ge A * \beta \tag{3}$$

• Server contract: strict service curve A server S offers a strict minimal service of curve β $(S \triangleright \beta)$ iff on any backlogged period (s, t] (i.e. $\forall x \in (s, t], A(x) > D(x)$)

$$D(t) - D(s) \ge \beta(t - s) \tag{4}$$

Common curves

$$\gamma_{r,b}(t) \stackrel{\text{def}}{=} \begin{cases} 0 & t=0 \\ rt+b & t>0 \end{cases}$$
 $\beta_{R,T}(t) \stackrel{\text{def}}{=} \begin{cases} 0 & t < T \\ Rt-T & t \ge T \end{cases}$

$$\delta_d(t) \stackrel{\text{def}}{=} \begin{cases} 0 & t < d \\ \infty & t \ge T \end{cases}$$
 $\mathbb{1}_{\{>\theta\}}(t) \stackrel{\text{def}}{=} \begin{cases} 0 & t \le \theta \\ 1 & t > \theta \end{cases}$

Network calculus: single flow results

• From arrival curve α and service curve β , bounds can be computed:

$$A \leq \alpha, S \geq \beta \implies d(A, S) \leq h(\alpha, \beta)$$
 (5)

• A strict service β is a simple service β

$$S \triangleright \beta \implies S \trianglerighteq \beta$$

• If S offers a strict service β , it also offers $[\beta]^+_{\uparrow}$

$$S \triangleright \beta \implies S \triangleright [\beta]^+_{\uparrow}$$

Network calculus: aggregated flow results

Blind multiplexing: assume strict service

$$\beta_1 = [\beta - \alpha_2]^+_{\uparrow} \tag{6}$$

• FIFO multiplexing: assume simple service, chose some $\theta \geq 0$,

$$\beta_1^{\theta} = \left[\beta - \alpha_2 * \delta_{\theta}\right]^+ \mathbb{1}_{\{>\theta\}} \tag{7}$$

Amount of data, "up to time t"

A(t) is amount of data sent up to time t

• How to model "instantaneous" arrival of packet at time t?

Arrival "just after"	Arrival "at time <i>t</i> "	
left-continuous	right-continuous	
good mathematical property	more "intuitive" model	

- Previous studies:
 - all assume left-continuous arrival curves
 - except the one handling packets

Does both modelling model same performances?

- Are values of delay and memory usage the same?
- Yes: delays and backlog are not affected by continuity

$$v(A_I, D_I) = v(A_r, D_r) \qquad h(A_I, D_I) = h(A_r, D_r)$$

with f_l (resp. f_r) the left-continuous (resp. right-continuous) closure of f

Redo classical proofs with right-continuous assumption

	Left-cont.	Right-cont.
Blind multiplexing	$[\beta - \alpha_i]^+_{\uparrow}$	$\geq [\beta - (\alpha_i)_r]^+_{\uparrow}$
FIFO multiplexing	$\left[\beta - \alpha_j * \delta_\theta\right]^+ \mathbb{1}_{\{>\theta\}} \le \left[\beta - \alpha_j * \delta_\theta\right]^+ \mathbb{1}_{\{\geq\theta\}}$	
Strict closure	idem $([eta]^+_{\uparrow})$	
Strict is simple	idem	
Other details	see the paper	

- Main results are preserved
- Result expression changes
 - minor changes (continuity points)
 - no numerical impact (delays and backlog are not affected by continuity)

Conclusion

- Inconsistency of previous studies
- Formal study on continuity
 - no impact on delay and memory values
 - no impact on main properties
 - limited impact on expressions
 - no impact on delay and memory bounds

