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Motivations

Problem
Allowing arbitrary preemptions can introduce a high amount of
runtime overhead.

Limiting preemptions in real-time tasks helps to :
Improve I/O scheduling,
Avoid mutual exclusion synchronizations
Limit Cache Related Preemption delays (overhead due to
cache misses,...)
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Limited Preemption Models

Compromise between (arbitrary) preemptive and
non-preemptive scheduling models :

Preemption thresholds : disable preemption up to a
specified priority level
Floating Preemption : maximum interval of non-preemptive
regions for each task.
Deferred preemption (Co-operative scheduling) : Fixed
preemption points (e.g., yield() call in the code)

Ref. Buttazzo et al., Limited preemptive scheduling for real-time
Systems : a survey, IEEE Trans. Industrial Informatics, 2013
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Deferred Preemption Task Model

Platform : Uniprocessor systems.
Scheduler : Static-priority online scheduling algorithms.
Task Sets : Sporadic tasks with arbitrary deadlines.
Priorities : Prio(τi) < Prio(τj) iff i < j .

Deferred Preemption Model :
Every Job of τi is a set of mi non-preemptive subjobs
preemptions are only allowed at subjob boundaries
non-preemptive scheduling is a particular case
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Example and Notations

Example with 3 subjobs : τi = {sj1, sj2, sj3}

0 1 2 3 4 5 6 7 8 9 10

τi

τi

sj1 sj2 sj3

τi τi

Ci =
∑mi

k=1 Ci,k=7 : worst-case execution time of τi

Fi = 3 - Computation time final subjob of τi .
Di = 9 - Relative deadline of τi

Ti = 10 - Minimum inter-arrival time of τi

Bi - Longest non-preemptive subjob among lower priority
tasks
Ui = Ci/Ti - Utilization factor

VNU Hanoï, ENSMA & University of Poitiers Approximation scheme 6



Problem statement
Response time approximation
Conclusion and Perspectives

Study background
Response time analysis : review
Studied problem

Existing Response Time Analysis

Exact worst-case Response Time Analysis (WRi )
Pseudo-polynomial time algorithm (Bril, et al, RTSJ. 2009)
NP-hard in the weak-sense (fixed-point computation)
No constant c for approximation :
WRi ≤ Approx(WRi) ≤ c ×WRi

Response time upper bound
Linear bound (Davis, Burns, RTSS’08) :

supD(WRi) =
Bi + Ci − Fi +

∑
j<i (Cj(1− Uj))

1−
∑

j<i Uj
+ Fi
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This work

FPTAS (Fully Polynomial Time Approximation Scheme) :
Response time upper bounds under resource augmentation.

Parametric algorithm with input error 0 < ε ≤ 1,
k =

⌈1
ε

⌉
− 1.

Let WRi be the exact worst-case response time upon a
unit speed processor :

WRi ≤ UB(WRi) for a unit-speed processor.
UB(WRi) ≤WRi for ( k

k+1 )-speed processor.

This processor speedup is an upper bound on the
price being paid for using an efficiently computable

upper bound on response time !
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How to reduce the computational complexity for
analysing τi ?

Level-i active period : interval of time where only tasks with
priority higher of equal to τi are running

Exact Analysis Approximate Analysis
solving fixed-point intersection of two

equations linear functions
Pseudo-polynomial number Polynomial number

of τi ’s jobs in of τi ’s jobs
Level-i active period Level-i active period
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Exact worst-case response time analysis

Analysis of all jobs in the level-i active period.
Request bound functions in [0, t) and [0, t ] :

RBF(τi , t)
def
=

⌈
t
Ti

⌉
Ci RBF’(τi , t)

def
=

(⌊
t
Ti

⌋
+ 1
)

Ci

Cumulative workload functions of tasks having a priority
higher or equal to τi,l plus a computation of length C :

wri,l(C, t)
def
= C + (l + 1)Ci +

∑
i<j

RBF(τi , t)

woi,l(C, t)
def
= C + (l + 1)Ci +

∑
i<j

RBF’(τi , t)
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Exact worst-case response time analysis

Fixed point equations for the job τi,l :
Worst-case Response time WRi,l(C) : smallest solution of
wri,l(C, t) = t .
Worst-case Occupied time WOi,l(C) : smallest solution of
woi,l(C, t) = t

Smallest fixed-point equations of WRi,l(C) and WOi,l(C) are
used for computing the starting time of the final subjob of τi,l :

Ri,l =

{
WRi,l(Bi − Fi) for i < n,
WOn,l(−Fn) for i = n.

Worst-case response time of τi,l : WRi,l = Ri,l + Fi − l × Ti
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Approximation scheme technique

k : number of steps (scheduling points) to consider before the
linear approximation.

R̂BF(τi , t) =

{
RBFi(t) for t ≤ (k − 1)Ti ,

(t + Ti)
Ci
Ti

otherwise.
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Approximate starting time of final subjobs

Between two subsequent job releases, compute the
intersection between :

the processor capacity function f (t) = t
approximate cumulative workload (linear)
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Approximate Workload Function and Testing Set

Scheduling Points (Testing set) :

Ŝi
def
= {t = aTb | a = 1, . . . , k − 1;b = 1, . . . , i − 1}

⋃
{0}

Let A denote the maximum instant in Ŝi :
(0,A] : ∀j ≤ i , approx. workload a step function.
(A,∞) : ∀j ≤ i , approx. workload is a linear continuous
function.

=⇒ corresponding to 2 testing stages.
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Stage 1 : Primitive interval properties

=⇒ There might be more than one job of τi to consider in a
primitive interval (t1, t2], but :

1 To check all jobs terminated against their deadlines : Check
only the first job whose final subjob has started in (t1, t2].

2 To check the end of the level-i active period : Check if the
last active period completes before the next job release.
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Stage 1 : Approximate Intersection Point

First Stage : Find an approximate intersection point in a
primitive interval (two subsequent scheduling points).
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Stage 2 : Linear approximation bound

Stage 2 analyses the primitive interval (A,∞) if level-i is not
completed before the last scheduling point of the Stage 1.

Define the index of the first job to complete in the interval
(A,∞)

Compute the intersection point between its approximate
workload and the processor capacity

Property
The greatest upper bound computed during the two stages
defines the approximate response time upper bound.
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Worst-case performance guarantee

Main properties of the algorithm :
Performance guarantees :

Lemma

Let s = k
k+1 . If (l + 1)Ci + C ≥ 0 then :

a. WRi,l(C) ≤ ŴR i,l(C) ≤WRs
i,l(C).

b. WOi,l(C) ≤ ŴOi,l(C) ≤WOs
i,l(C).

where k =
⌈1
ε

⌉
− 1

Worst-case speedup factor : (1 + k
k+1)

Complexity of the algorithm : O(kn2) (This is an FTPAS)
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Experimentations

Comparison of FPTAS and SupD (Davis,Burns, 2008) on
randomly generated task sets.

Monitored metrics :
Acceptance ratio : rate of tasks stated ”feasible” by the
considered upper bound (ubi ≤ Di ) for feasible tasks
(WRi ≤ Di ).
Average Error : ubi−WRi

WRi

Plots :
black : linear bound SupD (Davis, Burns 2008).
others : our algorithm for k = 2 to k = 5.
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Acceptance ratio
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Average Error
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Approximate Worst-case Response Time analysis of FPDS :
Polynomial Time Algorithm for response times upper
bounds with high accuracy (FTPAS)
Worst-case performance guarantee under resource
augmentation analysis (i.e., speed up factor)

Perspectives :
Release jitters and network analysis
Analysis of large scale distributed systems under resource
augmentation with a worst-case performance guarantee.
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