Approximation scheme for real-time tasks under fixed-priority scheduling with deferred preemption

T.H.C. Nguyen¹, N.S. Tran¹, V.H. Le¹, P. Richard²

⁽¹⁾ VNU, University of Enginnering and Technology, Hanoï, Vietnam ⁽²⁾ LIAS, ENSMA and University of Poitiers, France

Outlines

- Study background
- Response time analysis : review
- Studied problem

2 Response time approximation

- Approximate functions
- FPTAS principles
- Numerical experiments

Study background Response time analysis : I Studied problem

Motivations

Problem

Allowing arbitrary preemptions can introduce a high amount of runtime overhead.

Limiting preemptions in real-time tasks helps to :

- Improve I/O scheduling,
- Avoid mutual exclusion synchronizations
- Limit Cache Related Preemption delays (overhead due to cache misses,...)

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Study background Response time analysis : review Studied problem

Limited Preemption Models

Compromise between (arbitrary) preemptive and non-preemptive scheduling models :

- Preemption thresholds : disable preemption up to a specified priority level
- Floating Preemption : maximum interval of non-preemptive regions for each task.
- **Deferred preemption** (Co-operative scheduling) : Fixed preemption points (e.g., yield() call in the code)

Ref. Buttazzo et al., Limited preemptive scheduling for real-time Systems : a survey, IEEE Trans. Industrial Informatics, 2013

Study background Response time analysis : review Studied problem

Deferred Preemption Task Model

- Platform : Uniprocessor systems.
- Scheduler : Static-priority online scheduling algorithms.
- Task Sets : Sporadic tasks with arbitrary deadlines.
- Priorities : $Prio(\tau_i) < Prio(\tau_j)$ iff i < j.

Deferred Preemption Model :

- Every Job of τ_i is a set of m_i non-preemptive subjobs
- preemptions are only allowed at subjob boundaries
- non-preemptive scheduling is a particular case

• • • • • • • • • • • •

Study background Response time analysis : review Studied problem

Example and Notations

Example with 3 subjobs : $\tau_i = \{sj_1, sj_2, sj_3\}$

• $C_i = \sum_{k=1}^{m_i} C_{i,k} = 7$: worst-case execution time of τ_i

• $F_i = 3$ - Computation time final subjob of τ_i .

•
$$D_i = 9$$
 - Relative deadline of τ_i

- $T_i = 10$ Minimum inter-arrival time of τ_i
- *B_i* Longest non-preemptive subjob among lower priority tasks
- $U_i = C_i / T_i$ Utilization factor

• • • • • • • • • • • • •

Study background Response time analysis : review Studied problem

Existing Response Time Analysis

Exact worst-case Response Time Analysis (WR_i)

- Pseudo-polynomial time algorithm (Bril, et al, RTSJ. 2009)
- NP-hard in the weak-sense (fixed-point computation)
- No constant c for approximation : *WR_i* ≤ Approx(WR_i) ≤ c × WR_i

Response time upper bound

Linear bound (Davis, Burns, RTSS'08) :

$$supD(WR_i) = rac{B_i + C_i - F_i + \sum_{j < i} (C_j(1 - U_j))}{1 - \sum_{j < i} U_j} + F_i$$

< ロ > < 同 > < 回 > < 回 >

Study background Response time analysis : review Studied problem

Existing Response Time Analysis

Exact worst-case Response Time Analysis (WR_i)

- Pseudo-polynomial time algorithm (Bril, et al, RTSJ. 2009)
- NP-hard in the weak-sense (fixed-point computation)
- No constant *c* for approximation : *WR_i* ≤ *Approx*(*WR_i*) ≤ *c* × *WR_i*

Response time upper bound

Linear bound (Davis, Burns, RTSS'08) :

$$supD(WR_i) = rac{B_i + C_i - F_i + \sum_{j < i} (C_j(1 - U_j))}{1 - \sum_{j < i} U_j} + F_i$$

< ロ > < 同 > < 回 > < 回 >

Study background Response time analysis : review Studied problem

Existing Response Time Analysis

- Exact worst-case Response Time Analysis (WR_i)
 - Pseudo-polynomial time algorithm (Bril, et al, RTSJ. 2009)
 - NP-hard in the weak-sense (fixed-point computation)
 - No constant *c* for approximation : *WR_i* ≤ *Approx*(*WR_i*) ≤ *c* × *WR_i*
- Response time upper bound
 - Linear bound (Davis, Burns, RTSS'08) :

$$supD(WR_i) = rac{B_i + C_i - F_i + \sum_{j < i} (C_j(1 - U_j))}{1 - \sum_{j < i} U_j} + F_i$$

Study background Response time analysis : review Studied problem

This work

FPTAS (Fully Polynomial Time Approximation Scheme) : Response time upper bounds under resource augmentation.

- Parametric algorithm with input error 0 < ε ≤ 1,
 k = [¹/_ε] 1.
- Let WR_i be the exact worst-case response time upon a unit speed processor :
 - $WR_i \leq UB(WR_i)$ for a unit-speed processor.
 - $UB(WR_i) \leq WR_i$ for $(\frac{k}{k+1})$ -speed processor.

This processor speedup is an upper bound on the price being paid for using an efficiently computable upper bound on response time !

Study background Response time analysis : review Studied problem

This work

FPTAS (Fully Polynomial Time Approximation Scheme) : Response time upper bounds under resource augmentation.

- Parametric algorithm with input error 0 < ε ≤ 1,
 k = [¹/_ε] 1.
- Let WR_i be the exact worst-case response time upon a unit speed processor :
 - $WR_i \leq UB(WR_i)$ for a unit-speed processor.
 - $UB(WR_i) \leq WR_i$ for $(\frac{k}{k+1})$ -speed processor.

This processor speedup is an upper bound on the price being paid for using an efficiently computable upper bound on response time !

イロト イヨト イヨト イヨ

Approximate functions FPTAS principles Numerical experiments

How to reduce the computational complexity for analysing τ_i ?

Level-*i* active period : interval of time where only tasks with priority higher of equal to τ_i are running

Exact Analysis	Approximate Analysis
solving fixed-point	intersection of two
equations	linear functions
Pseudo-polynomial number	Polynomial number
of $ au_i$'s jobs in	of $ au_i$'s jobs
Level- <i>i</i> active period	Level- <i>i</i> active period

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Approximate functions FPTAS principles Numerical experiments

Exact worst-case response time analysis

- Analysis of all jobs in the level-*i* active period.
- Request bound functions in [0, t) and [0, t] :

$$\mathsf{RBF}(\tau_i, t) \stackrel{\text{def}}{=} \left\lceil \frac{t}{T_i} \right\rceil C_i \qquad \mathsf{RBF'}(\tau_i, t) \stackrel{\text{def}}{=} \left(\left\lfloor \frac{t}{T_i} \right\rfloor + 1 \right) C_i$$

 Cumulative workload functions of tasks having a priority higher or equal to *τ_{i,l}* plus a computation of length *C* :

$$wr_{i,l}(C,t) \stackrel{\text{def}}{=} C + (l+1)C_i + \sum_{i < j} \text{RBF}(\tau_i,t)$$
$$wo_{i,l}(C,t) \stackrel{\text{def}}{=} C + (l+1)C_i + \sum_{i < j} \text{RBF}'(\tau_i,t)$$

< ロ > < 同 > < 回 > < 回 >

Approximate functions FPTAS principles Numerical experiments

Exact worst-case response time analysis

- Analysis of all jobs in the level-*i* active period.
- Request bound functions in [0, t) and [0, t] :

$$\mathsf{RBF}(\tau_i, t) \stackrel{\text{def}}{=} \left\lceil \frac{t}{T_i} \right\rceil C_i \qquad \mathsf{RBF'}(\tau_i, t) \stackrel{\text{def}}{=} \left(\left\lfloor \frac{t}{T_i} \right\rfloor + 1 \right) C_i$$

 Cumulative workload functions of tasks having a priority higher or equal to τ_{i,l} plus a computation of length C :

$$wr_{i,l}(C,t) \stackrel{\text{def}}{=} C + (l+1)C_i + \sum_{i < j} \text{RBF}(\tau_i, t)$$
$$wo_{i,l}(C,t) \stackrel{\text{def}}{=} C + (l+1)C_i + \sum_{i < j} \text{RBF}'(\tau_i, t)$$

Exact worst-case response time analysis

Fixed point equations for the job $\tau_{i,l}$:

- Worst-case Response time WR_{i,l}(C) : smallest solution of wr_{i,l}(C, t) = t.
- Worst-case Occupied time WO_{i,l}(C) : smallest solution of wo_{i,l}(C, t) = t

Smallest fixed-point equations of $WR_{i,l}(C)$ and $WO_{i,l}(C)$ are used for computing the *starting time* of the final subjob of $\tau_{i,l}$:

$$R_{i,l} = \begin{cases} WR_{i,l}(B_i - F_i) & \text{for } i < n, \\ WO_{n,l}(-F_n) & \text{for } i = n. \end{cases}$$

Worst-case response time of $\tau_{i,l}$: $WR_{i,l} = R_{i,l} + F_i - I \times T_i$

< ロ > < 同 > < 回 > < 回 >

Exact worst-case response time analysis

Fixed point equations for the job $\tau_{i,l}$:

- Worst-case Response time WR_{i,l}(C) : smallest solution of wr_{i,l}(C, t) = t.
- Worst-case Occupied time WO_{i,l}(C) : smallest solution of wo_{i,l}(C, t) = t

Smallest fixed-point equations of $WR_{i,l}(C)$ and $WO_{i,l}(C)$ are used for computing the *starting time* of the final subjob of $\tau_{i,l}$:

$$R_{i,l} = \begin{cases} WR_{i,l}(B_i - F_i) & \text{for } i < n, \\ WO_{n,l}(-F_n) & \text{for } i = n. \end{cases}$$

Worst-case response time of $\tau_{i,l}$: $WR_{i,l} = R_{i,l} + F_i - I \times T_i$

< ロ > < 同 > < 回 > < 回 >

Exact worst-case response time analysis

Fixed point equations for the job $\tau_{i,l}$:

- Worst-case Response time WR_{i,l}(C) : smallest solution of wr_{i,l}(C, t) = t.
- Worst-case Occupied time WO_{i,l}(C) : smallest solution of wo_{i,l}(C, t) = t

Smallest fixed-point equations of $WR_{i,l}(C)$ and $WO_{i,l}(C)$ are used for computing the *starting time* of the final subjob of $\tau_{i,l}$:

$$R_{i,l} = \begin{cases} WR_{i,l}(B_i - F_i) & \text{for } i < n, \\ WO_{n,l}(-F_n) & \text{for } i = n. \end{cases}$$

Worst-case response time of $\tau_{i,l}$: $WR_{i,l} = R_{i,l} + F_i - I \times T_i$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Approximate functions FPTAS principles Numerical experiments

Approximation scheme technique

k : number of steps (scheduling points) to consider before the linear approximation.

$$\widehat{\mathsf{RBF}}(au_i,t) = egin{cases} \mathsf{RBF}_i(t) & ext{for } t \leq (k-1) \, T_i, \ (t+T_i) rac{C_i}{T_i} & ext{otherwise.} \end{cases}$$

Approximate starting time of final subjobs

Between two subsequent job releases, compute the intersection between :

- the processor capacity function f(t) = t
- approximate cumulative workload (linear)

Approximate Workload Function and Testing Set

Scheduling Points (Testing set) :

$$\widehat{S}_i \stackrel{\mathsf{def}}{=} \{t = aT_b \mid a = 1, \dots, k-1; b = 1, \dots, i-1\} \bigcup \{0\}$$

• Let A denote the maximum instant in \widehat{S}_i :

- (0, A] : $\forall j \leq i$, approx. workload a step function.
- (A,∞): ∀j ≤ i, approx. workload is a linear continuous function.
- \implies corresponding to 2 testing stages.

Approximate functions FPTAS principles Numerical experiments

Stage 1 : Primitive interval properties

\implies There might be more than one job of τ_i to consider in a primitive interval $(t_1, t_2]$, but :

- To check all jobs terminated against their deadlines : Check only the first job whose final subjob has started in $(t_1, t_2]$.
- To check the end of the level-*i* active period : Check if the last active period completes before the next job release.

Approximate functions FPTAS principles Numerical experiments

Stage 1 : Primitive interval properties

 \implies There might be more than one job of τ_i to consider in a primitive interval $(t_1, t_2]$, but :

• To check all jobs terminated against their deadlines : Check only the first job whose final subjob has started in $(t_1, t_2]$.

To check the end of the level-*i* active period : Check if the last active period completes before the next job release.

Approximate functions FPTAS principles Numerical experiments

Stage 1 : Primitive interval properties

 \implies There might be more than one job of τ_i to consider in a primitive interval $(t_1, t_2]$, but :

- To check all jobs terminated against their deadlines : Check only the first job whose final subjob has started in $(t_1, t_2]$.
- To check the end of the level-*i* active period : Check if the last active period completes before the next job release.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Approximate functions FPTAS principles Numerical experiments

Stage 1 : Approximate Intersection Point

First Stage : Find an approximate intersection point in a primitive interval (two subsequent scheduling points).

Stage 2 : Linear approximation bound

Stage 2 analyses the primitive interval (A, ∞) if level-*i* is not completed before the last scheduling point of the Stage 1.

- Define the index of the first job to complete in the interval (A,∞)
- Compute the intersection point between its approximate workload and the processor capacity

Property

The greatest upper bound computed during the two stages defines the approximate response time upper bound.

Stage 2 : Linear approximation bound

Stage 2 analyses the primitive interval (A, ∞) if level-*i* is not completed before the last scheduling point of the Stage 1.

- Define the index of the first job to complete in the interval (A,∞)
- Compute the intersection point between its approximate workload and the processor capacity

Property

The greatest upper bound computed during the two stages defines the approximate response time upper bound.

Approximate functions FPTAS principles Numerical experiments

Worst-case performance guarantee

Main properties of the algorithm :

• Performance guarantees :

Lemma

Let
$$s = \frac{k}{k+1}$$
. If $(l+1)C_i + C \ge 0$ then :
a. $WR_{i,l}(C) \le \widehat{WR}_{i,l}(C) \le WR_{i,l}^s(C)$.
b. $WO_{i,l}(C) \le \widehat{WO}_{i,l}(C) \le WO_{i,l}^s(C)$.

where $k = \left\lceil \frac{1}{\epsilon} \right\rceil - 1$

- Worst-case speedup factor : $(1 + \frac{k}{k+1})$
- Complexity of the algorithm : $\mathcal{O}(kn^2)$ (This is an FTPAS)

< ロ > < 同 > < 回 > < 回 >

Approximate functions FPTAS principles Numerical experiments

Worst-case performance guarantee

Main properties of the algorithm :

• Performance guarantees :

Lemma

Let
$$s = \frac{k}{k+1}$$
. If $(l+1)C_i + C \ge 0$ then :
a. $WR_{i,l}(C) \le \widehat{WR}_{i,l}(C) \le WR_{i,l}^s(C)$.
b. $WO_{i,l}(C) \le \widehat{WO}_{i,l}(C) \le WO_{i,l}^s(C)$.

where $k = \left\lceil \frac{1}{\epsilon} \right\rceil - 1$

• Worst-case speedup factor : $(1 + \frac{k}{k+1})$

• Complexity of the algorithm : $\mathcal{O}(kn^2)$ (This is an FTPAS)

Approximate functions FPTAS principles Numerical experiments

Worst-case performance guarantee

Main properties of the algorithm :

• Performance guarantees :

Lemma

Let
$$s = \frac{k}{k+1}$$
. If $(l+1)C_i + C \ge 0$ then :
a. $WR_{i,l}(C) \le \widehat{WR}_{i,l}(C) \le WR_{i,l}^s(C)$.
b. $WO_{i,l}(C) \le \widehat{WO}_{i,l}(C) \le WO_{i,l}^s(C)$.

where $k = \left\lceil \frac{1}{\epsilon} \right\rceil - 1$

- Worst-case speedup factor : $(1 + \frac{k}{k+1})$
- Complexity of the algorithm : $O(kn^2)$ (This is an FTPAS)

Approximate functions FPTAS principles Numerical experiments

Experimentations

Comparison of FPTAS and SupD (Davis,Burns, 2008) on randomly generated task sets.

Monitored metrics :

Acceptance ratio : rate of tasks stated "feasible" by the considered upper bound (*ub_i* ≤ *D_i*) for feasible tasks (*WR_i* ≤ *D_i*).

Plots :

- black : linear bound SupD (Davis, Burns 2008).
- others : our algorithm for k = 2 to k = 5.

Approximate functions FPTAS principles Numerical experiments

Acceptance ratio

・ロト ・ 四ト ・ ヨト ・ ヨト

æ

Approximate functions FPTAS principles Numerical experiments

Average Error

・ロト ・ 四ト ・ ヨト ・ ヨト

æ

Conclusion and Perspectives

Approximate Worst-case Response Time analysis of FPDS :

- Polynomial Time Algorithm for response times upper bounds with high accuracy (FTPAS)
- Worst-case performance guarantee under resource augmentation analysis (i.e., speed up factor)

Perspectives :

- Release jitters and network analysis
- Analysis of large scale distributed systems under resource augmentation with a worst-case performance guarantee.

Conclusion and Perspectives

Approximate Worst-case Response Time analysis of FPDS :

- Polynomial Time Algorithm for response times upper bounds with high accuracy (FTPAS)
- Worst-case performance guarantee under resource augmentation analysis (i.e., speed up factor)

Perspectives :

- Release jitters and network analysis
- Analysis of large scale distributed systems under resource augmentation with a worst-case performance guarantee.